Matsunaga, S., Tanaka, R., Takaoka, Y., In, Y., Ishida, T., Rahmani M. \& Ismail, H. B. M. (1993). Phytochemistry, 32, 165-170.

Molecular Structure Corporation (1994). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nielsen, H. B., Hazell, A., Hazell, R., Ghia, F. \& Torssell, B. G. (1994). Phytochemistry, 37, 1729-1735.

Sakurai, N., Yaguchi, Y. \& Inoue, Y. (1987). Phytochemistry, 26, 217-219.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany
Tinant. B., Germain, G., Declercq, J.-P., van Meerssche, M., Ciccio, J. F. \& Hoet, P. (1982). Bull. Soc. Chim. Belg. 91, 117-121.

Acta Cryst. (1999). C55, 215-217

Flemiculosin, a novel chalcone

Kinkin Bhattacharyya, ${ }^{a}$ Sunll Kumar Mazumdar, ${ }^{a}$ Gabriele Bocelli, ${ }^{\text {b }}$ Andrea Cantoni, ${ }^{\text {b }}$ anil B. Ray, ${ }^{c}$ Partha Neogic and Gauri Mazumdar ${ }^{d}$
${ }^{a}$ Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India, ${ }^{6}$ Diffrattometrica del CNR, Viale delle Scienze, Palazzo Chimico I-43100, Parma, Italy, 'Department of Medicinal Chemistry, Banaras Hindu University, Varanasi 221 005, India, and ${ }^{d}$ B. Barooah College, Guahati 781 007, India.
E-mail: mskb@mahendra.iacs.res.in
(Received 20 May 1998; accepted 1 September 1998)

Abstract

The title compound, 6-cinnamoyl-5-hydroxy-2,2,8,8-tetramethyl- $2 \mathrm{H}, 8 \mathrm{H}$-pyrano $\left[2,3-f \mathrm{f}\right.$ chromene, $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4}$, is an angular benzodipyran system. It contains a central tricyclic core and a peripheral aromatic ring. The central ring of the tricyclic core is fully substituted while the pyran rings on either side are each unsubstituted at two sites. The central fully substituted ring is planar within $0.014 \AA$. One pyran ring is planar to within $0.041 \AA$, but the second pyran ring is only planar to within $0.156 \AA$ A this may be attributed to an intramolecular C$\mathrm{H} \cdots \mathrm{O}$ contact of $2.30 \AA$. The structure is stabilized by intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The genus Flemingia is notable for including a variety of flavanoids, particularly stromenochalcones; a number of Flemingia species have been examined chemically (Adityachaudhury et al., 1970; Adityachaudhury \& Gupta, 1970; Bhatt, 1975). Flemiculosin, (I), a novel chalcone with an angular benzodipyran system, has been studied chemically, and NMR and spectroscopic studies have been carried out by Khattri et al. (1984). We report
here the X-ray structure determination of flemiculosin undertaken to provide more details of the structure.

(I)

The title compound has been isolated from the leaves of Flemingia fruticulose wall. (Leguminosae). Flemiculosin is unique among chalcones being the first member of the flavanoid class of compounds to have a benzodipyran unit. It is a 2^{\prime}-hydroxychalcone in which ring B is unsubstituted and ring A is completely substituted as part of the benzodipyran system. The oxygen substitution pattern of ring A is also biogenetically consistent as prenyl substituents in flavonoids and other related carbo-aromatic compounds are mostly found between two oxygen substituents. The benzodipyran system is not planar: ring A makes angles of 1.94 (7) and $6.36(6)^{\circ}$ with rings C and D, respectively. In the cinnamoyl moiety, the least-squares plane through atoms C6-Cl1-C12-C13 makes an angle of $20.4(2)^{\circ}$ with the benzene ring, B. This plane is not coplanar with ring A, as shown by the torsion angles $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11-\mathrm{C} 12$ [167.4 (2)] and $\mathrm{C}^{\prime}-\mathrm{C} 6-\mathrm{C} 11-\mathrm{C} 12$ [-14.6(3) ${ }^{\circ}$]. In the same moiety, O25 lies 0.340 (2) \AA above the C6-C11-C12-C13 plane. O24 is nearly coplanar with ring A. The central double bond $(\mathrm{C} 12=\mathrm{C} 13)$ has a trans configuration and the length of the $\mathrm{C} 11=\mathrm{C} 25$ bond is similar to that seen in related chalcones such as the two nitro- α-methoxy-trans-chalcones described

Fig. 1. Structure of the title compound showing 30% probability displacement ellipsoids and atom numbering. H atoms are shown with an arbitrary radius.
by Bolte et al. (1996) and in (E)-5-methylthio-1,5-di-phenyl-1-penten-3-one (Tokuno et al., 1986).

The central, fully substituted ring (A) of the tricyclic core is planar to within $0.014 \AA$. The first pyran ring (C) is planar to within $0.041 \AA$, but the second pyran ring (D) is only planar to within $0.156 \AA$. This deviation may be due to the steric hindrance between C 12 and O 7 [2.733 (3) \AA]: the H12 $\cdots \mathrm{O} 7$ distance is only $2.30 \AA$.

An intramolecular hydrogen bond exists between O 25 of the cinnamoyl moiety and O 24 of the benzodipyran system [O24...O25 2.493 (2) Å, O24H24.. O25 $149(2)^{\circ}$].

Experimental

Crystals of the title compound were obtained by chromatographic resolution of the petroleum ether extract of the leaves of F. fruticulose, followed by slow evaporation of a hexane solution at room temperature.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4}$
$M_{r}=388.44$
Monoclinic
$P 21 / c$
$a=12.316$ (2) \AA
$b=9.606(2) \AA$
$c=18.296(3) \AA$
$\beta=103.77$ (2) ${ }^{\circ}$ 。
$V=2102.3(7) \AA^{3}$
$Z=4$
$D_{x}=1.227 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens AED diffractometer

$\omega-2 \theta$ scans

Absorption correction:
ψ scan (North et al.,
1968)
$T_{\text {min }}=0.758, T_{\text {max }}=0.936$
4104 measured reflections
3983 independent reflections 2951 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.184$
$S=1.103$
3950 reflections
268 parameters
H atoms: see text
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1226 P)^{2}\right.$
$+0.3428 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.04$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 35 reflections
$\theta=10-15^{\circ}$
$\mu=0.662 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Tablet
$0.25 \times 0.22 \times 0.10 \mathrm{~mm}$ Red

$$
R_{\text {int }}=0.034
$$

$\theta_{\text {max }}=70.02^{\circ}$
$h=-15 \rightarrow 14$
$k=0 \rightarrow 11$
$l=0 \rightarrow 22$
1 standard reflection every 100 reflections intensity decay: none

$$
\Delta \rho_{\max }=0.18 \mathrm{e}^{-3}
$$

$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0051 (7)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C2'	1.345 (3)	07-C8	1.471 (2)
$\mathrm{O}-\mathrm{C} 2$	1.466 (2)	C8-C21	1.517 (3)
$\mathrm{C} 2-\mathrm{C} 23$	1.503 (3)	C8-C20	1.525 (3)
C2-C22	1.515 (4)	C11-025	1.247 (3)
C5-024	1.344 (2)	$\mathrm{C} 11-\mathrm{Cl2}$	1.476 (3)
C6-C11	1.463 (3)	$\mathrm{C} 12-\mathrm{Cl} 3$	1.317 (3)
O7-C4'	1.360 (2)	$\mathrm{C} 13-\mathrm{C} 14$	1.464 (3)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 3$	111.6 (2)	$\mathrm{O} 25-\mathrm{Cl1}-\mathrm{C} 12$	118.1 (2)
C23-C2-C22	111.1 (2)	C6-C11-C12	122.0 (2)
O24-C5-C1	117.6 (2)	$\mathrm{C} 13-\mathrm{Cl} 2-\mathrm{Cl1}$	122.0 (2)
O24-C5-C6	120.3 (2)	$\mathrm{Cl2-C13-C14}$	126.8 (2)
C4'-07-C8	117.22 (13)	$\mathrm{C} 19-\mathrm{C14-C13}$	119.6 (2)
C21-C8-C20	111.1 (2)	C15-C14-C13	122.3 (2)
O25-C11-C6	119.9 (2)		
$\mathrm{C} 2^{\prime}-\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 23$	134.2 (3)	C5-C6-C11-C12	167.4 (2)
$\mathrm{C} 2^{\prime}-\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 22$	- 108.5 (3)	$\mathrm{O} 25-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	-26.4 (4)
$\mathrm{C} 22-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	108.5 (3)	$\mathrm{C} 11-\mathrm{Cl2-C13-C14}$	-178.0 (2)
$\mathrm{C} 4^{\prime}-\mathrm{O} 7-\mathrm{C} 8-\mathrm{C} 20$	167.8 (2)	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19$	173.2 (2)
$\mathrm{C} 21-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	84.0 (2)	$\mathrm{C} 12-\mathrm{Cl} 3-\mathrm{Cl} 4-\mathrm{Cl} 5$	-7.3(4)
$\mathrm{C} 4^{\prime}-\mathrm{C} 6-\mathrm{C} 11-\mathrm{O} 25$	167.4 (2)	$\mathrm{O} 24-\mathrm{C5}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	178.0 (2)
C5-C6--C11-025	-10.6 (3)	$\mathrm{C5}-\mathrm{Cl}^{\prime}-\mathrm{C2}^{\prime}-\mathrm{C}^{\prime}$	0.8 (3)
$\mathrm{C} 4^{\prime}-\mathrm{C} 6-\mathrm{Cl1}-\mathrm{Cl}^{2}$	-14.6(3)		

Table 2. Ring puckering parameters $\left({ }_{A},^{\circ}\right)$

Ring	q_{2}	q_{3}	Q_{T}	θ
A	$0.038(2)$	$-0.007(2)$	$0.038(2)$	$101(3)$
C	$0.095(2)$	$-0.039(2)$	$0.102(2)$	$112.5(13)$
D	$0.372(2)$	$-0.152(2)$	$0.402(2)$	$112.2(3)$

H atoms were inserted at geometrically calculated positions, except for those of the hydroxyl (H24 on O24) and methyl groups. They were found from a circular difference Fourier synthesis. The H atoms were then allowed to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=n U_{\text {eq }}$ (parent), where $n=1.5$ for hydroxyl- and methyl-H atoms, and 1.2 for all others.

Data collection: local program (Belletti et al., 1993). Cell refinement: local program. Data reduction: local program. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1994). Software used to prepare material for publication: SHELXL93.

We wish to thank Professor S. P. SenGupta, Department of Materials Science, Indian Association for the Cultivation of Science, for extending all the facilities and for his keen interest in our work. We are also grateful to the Council of Scientific and Industrial Research, Government of India, for financial assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BMI 267). Services for accessing these data are described at the back of the journal.

References

Adityachaudhury, N. \& Gupta, P. K. (1970). Chem. Ind. (London), pp. 1113-1117.
Adityachaudhury, N., Kirtaniya, C. L. \& Mukherjee, B. (1970). J. Indian Chem. Soc. 47, 508-510.
Belletti, D., Cantoni, A. \& Pasquinelli, G. (1993). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Personal Computer. Internal Report, pp. 1-93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
Bhatt, S. (1975). Indian J. Chem. 13, 1105-1108.
Bolte, M., Schütz, G. \& Bader, H. J. (1996). Acta Cṛ̂st. C52, 28072809.

Khattri, P. S., Sahai, M., Dasgupta, B. \& Ray, A. B. (1984). Heterocycles, 22, 249-252.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tokuno, K., Matsui, M., Miyoshi, F., Asao, Y., Ohashi, T. \& Kihara, K. (1986). Acta Cryst. C42, 85-88.

Zsolnai, L. (1994). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 217-218

(S)-2-Hydroxy-3-(1H-imidazol-5-yl)propanoic acid hydrate

Nobuo Okabe and Yukari Adachi
Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577, Japan. E-mail: okabe@phar.kindai.ac.jp

(Received I7 February 1998; accepted 29 September 1998)

Abstract

(S)-2-Hydroxy-3-(1 H -imidazol-5-yl)propanoic acid hydrate, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, has a fully extended lactic acid side chain with a trans conformation, which is oriented nearly perpendicular to the imidazole plane. The imidazole ring is protonated, and the carboxylate group deprotonated, to give a zwitterionic structure. The molecules are held together by intermolecular hydrogen bonds between the carboxylate, imino and hydroxyl groups, and the water molecules.

Comment

The title compound, (I) is a well known final product of L-histidine catabolism. Patients with liver cirrhosis or histidinemia have high urinary values of (I) (Dubovsky \& Dubovska, 1965; Murray et al., 1993). It also has an inhibitory action on cholinesterase and monoamine oxidase (Kurocochi et al., 1956). Accordingly, an accurate crystal structure determination is important for the elucidation of its catabolic pathway and physiological action.

(I)
(II)

The molecular structure of (I) is shown in Fig. 1, with the atomic labelling scheme. The molecule is in a zwitterionic form, i.e. (II) rather than (I). The carboxylate group is negatively charged, as evidenced by the similar C-O distances, as well as by the lack of an H atom, and the imidazole ring is positively charged, as evidenced by two imino H atoms. The conformation may be compared with that of histidine hydrochloride (Donohue et al., 1956), because the only difference between the title compound and histidine is the substitution of OH in (I) for the α-amino group in histidine. The chief conformational change involves rotations around the C4-C6 and C6-C7 bonds. The ionized lactic acid side chain of the title compound is fully extended, with a trans conformation [C4-C6-C7-C8-175.2 (2) ${ }^{\circ}$], and it is oriented nearly perpendicular to the protonated imidazole plane [C5-C4-C6-C7 92.1 (4) ${ }^{\circ}$]. The imidazole ring and the carboxylate group are sited in an anti form. The imidazole ring of histidine hydrochloride is also protonated; its side chain is oriented nearly perpendicular, as in (I), but its carboxylate and imidazole groups are in a cis form. The other main differences between these compounds are in the bond angles around the asymmetric C atoms. For instance, the $\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$ angle $\left[112.1(2)^{\circ}\right.$] of the title compound is larger than that of the corresponding $\mathrm{N}-\mathrm{C}-\mathrm{C}$ angle of 108.4° in histidine. This difference may be caused by the attractive force between the positively charged amino and the negatively charged carboxylate groups of histidine. As a result of the differences of the substituted groups (hydroxyl or amino) at the asymmetric C atom, the C6-C7-C8 angle [108.5(2) ${ }^{\circ}$] of the title compound is smaller than the corresponding value of 115.0° in histidine. No stacking interactions between imidazole rings are observed. The crystal structure is stabilized by hydrogen bonds between the carboxylate, imino and hydroxyl groups and the water molecules, as shown in Table 2.

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound, with the atom-numbering scheme for non- H atoms: displacement ellipsoids correspond to 50% probability. H atoms are shown as circles of an arbitrary radius.

